Please respect any copyrights when downloading

- [2] (2022) STeX3 – a LATEX-based ecosystem for semantic/active mathemapubtical documents. TeX users group conference (tug), pp. 197–201. External Links: Link Cited by: p1.
- [1] (2018) Model pathway diagrams for the representation of mathematical models. Journal of Optical and Quantum Electronics 50 (2), pp. 70. External Links: Document Cited by: p1.

- [3] (2022) Explaining image classifications with near misses, near hits and prototypes: supporting domain experts in understanding decision boundaries. In Pattern Recognition and Artificial Intelligence: Third International Conference, ICPRAI 2022, External Links: Document, Link Cited by: p1.
- [8] (2022) System description: stex3 – a LATEX-based ecosystem for semantic/active mathematical documents. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2022, K. Buzzard and T. Kutsia (Eds.), LNAI, Vol. 13467, pp. 184–188. External Links: Link Cited by: p1.
- [11] (2022) Injecting formal mathematics into latex. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2022, K. Buzzard and T. Kutsia (Eds.), LNAI, Vol. 13467, pp. 168–183. External Links: Link Cited by: p1.
- [12] (2022) An interactive explanatory ai system for industrial quality control. In IAAI 2022, External Links: Document, Link Cited by: p1.
- [4] (2020) FrameIT: detangling knowledge management from game design in serious games. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2020, C. Benzmüller and B. Miller (Eds.), LNAI, Vol. 12236, pp. 173–189. External Links: Document, Link Cited by: p1.
- [14] (2020) Representing structural language features in formal meta-languages. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2020, C. Benzmüller and B. Miller (Eds.), LNAI, Vol. 12236, pp. 206–221. External Links: Link Cited by: p1.
- [1] (2019) Relational data across mathematical libraries. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2019, C. Kaliszyck, E. Brady, A. Kohlhase, and C. Sacerdoti Coen (Eds.), LNAI, pp. 61–76. External Links: Link Cited by: p1.
- [15] (2019) The Coq Library as a Theory Graph. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2019, C. Kaliszyck, E. Brady, A. Kohlhase, and C. Sacerdoti Coen (Eds.), LNAI. Cited by: p1.
- [10] (2018) Automatically finding theory morphisms for knowledge management. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2018, F. Rabe, W. M. Farmer, G. O. Passmore, and A. Youssef (Eds.), LNAI. External Links: Link Cited by: p1.
- [13] (2018) Theories as types. In 9th international joint conference on automated reasoning9th International Joint Conference on Automated Reasoning, D. Galmiche, S. Schulz, and R. Sebastiani (Eds.), External Links: Link Cited by: p1.
- [5] (2017) Mathematical models as research data via flexiformal theory graphs. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2017, H. Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke (Eds.), LNAI. External Links: Link Cited by: p1.
- [6] (2017) Making PVS accessible to generic services by interpretation in a universal format. In Interactive theorem proving 8th international conference, itp 2017Interactive Theorem Proving, M. Ayala-Rincón and C. A. Muñoz (Eds.), LNCS, Vol. 10499. External Links: Link Cited by: p1.
- [7] (2017) Knowledge-based interoperability for mathematical software systems. In MACIS 2017MACIS 2017: Seventh International Conference on Mathematical Aspects of Computer and Information Sciences, J. Blömer, T. Kutsia, and D. Simos (Eds.), LNCS, pp. 195–210. External Links: Link Cited by: p1.
- [9] (2017) Classification of alignments between concepts of formal mathematical systems. In Intelligent computer mathematicsIntelligent Computer Mathematics (CICM) 2017, H. Geuvers, M. England, O. Hasan, F. Rabe, and O. Teschke (Eds.), LNAI. External Links: Link Cited by: p1.
- [2] (2016) Interoperability in the OpenDreamKit project: the math-in-the-middle approach. In Intelligent computer mathematicsIntelligent Computer Mathematics 2016, M. Kohlhase, M. Johansson, B. Miller, L. de Moura, and F. Tompa (Eds.), LNAI. External Links: Link Cited by: p1.

- [1] (2019-12) Mathematical knowledge management across formal libraries. Ph.D. Thesis, Informatics, FAU Erlangen-Nürnberg. External Links: Link Cited by: p1.

- [2] (2021) Disambiguating symbolic expressions in informal documents. In International Conference on Learning Representations, External Links: Link Cited by: p1.
- [4] (2019) Rapid prototyping formal systems in mmt: 5 case studies. In LFMTP 2019, External Links: Link Cited by: p1.
- [3] (2018) Theories as types. In 9th international joint conference on automated reasoning9th International Joint Conference on Automated Reasoning, D. Galmiche, S. Schulz, and R. Sebastiani (Eds.), External Links: Link Cited by: p1.
- [6] (2018) Structuring theories with implicit morphisms. In 24th International Workshop on Algebraic Development Techniques 2018, External Links: Link Cited by: p1.
- [5] (2017) Alignment-based translations across formal systems using interface theories. In Fifth Workshop on Proof eXchange for Theorem Proving - PxTP 2017, External Links: Link Cited by: p1.
- [8] (2017) A flexible, interactive theory-graph viewer. In MathUI 2017: the 12th workshop on mathematical user interfacesMathUI 2017: The 12th Workshop on Mathematical User Interfaces, A. Kohlhase and M. Pollanen (Eds.), External Links: Link Cited by: p1.
- [1] (2016) A standard for aligning mathematical concepts. In Intelligent computer mathematics – work in progress papersIntelligent Computer Mathematics – Work in Progress Papers, M. Kohlhase, A. Kohlhase, P. Libbrecht, B. Miller, A. Naumowicz, W. Neuper, P. Quaresma, F. Tompa, and M. Suda (Eds.), External Links: Link Cited by: p1.
- [7] (2016) FrameIT reloaded: serious math games from modular math ontologies. In Intelligent computer mathematics – work in progress papersIntelligent Computer Mathematics – Work in Progress Papers, M. Kohlhase, A. Kohlhase, P. Libbrecht, B. Miller, A. Naumowicz, W. Neuper, P. Quaresma, F. Tompa, and M. Suda (Eds.), External Links: Link Cited by: p1.

- [1] (2018) Report on OpenDreamKit deliverable d6.5: gap/sage/lmfdb interface theories and alignment in omdoc/mmt for system interoperability. Deliverable Technical Report D6.5, OpenDreamKit. External Links: Link Cited by: p1.
- [2] (2018) Report on OpenDreamKit deliverable d6.8: curated math-in-the-middle ontology and alignments for gap/sage/lmfdb. Deliverable Technical Report D6.8, OpenDreamKit. External Links: Link Cited by: p1.
- [5] (2017) Mathematical models as research data via flexiformal theory graphs. WIAS Preprint Technical Report 2385. External Links: Document Cited by: p1.
- [7] (2017) Model pathway diagrams for the representation of mathematical models. WIAS Preprint Technical Report 2431. External Links: Document Cited by: p1.
- [3] (2016) Report on OpenDreamKit deliverable d6.3: design of triform (D/K/S) theories (specification/rnc schema/examples) and implementation of triform theories in the MMT API. Deliverable Technical Report D6.2, OpenDreamKit. External Links: Link Cited by: p1.
- [4] (2016) Report on OpenDreamKit deliverables d6.2: initial D/K/S base design (including base survey and requirements workshop report) and d6.3: design of triform (D/K/S) theories (specification/RNC schema/examples) and implementation of triform theories in the mmt api. Deliverable Technical Report D6.2, OpenDreamKit. External Links: Link Cited by: p1.
- [6] The sTeX3 manual. Technical report External Links: Link Cited by: p1.

- [1] (2022) The Y Model – formalization of computer-science tasks in the context of intelligent tutoring systems. Note: submitted External Links: Link Cited by: p1.
- [2] (2020) The space of mathematical software systems – a survey of paradigmatic systems. Note: preprint; http://arxiv.org/abs/2002.04955 Cited by: p1.
- [3] (2018) Structuring theories with implicit morphisms. Extended Abstract. External Links: Link Cited by: p1.